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Abstract

We investigate a scheme for efficient non-radiative mid-range wireless power transfer proposed by
Karalis, et al., based on resonant dielectric disks coupled through non-radiative fields near the resonators.
We briefly review the efficiency measures for such a power transfer setup, and we present results from
a 2D FDFD eigenmode analysis of the coupled disk system. We also show power efficiency calculations
from an FDFD analysis of source and load, and investigate the effect of extraneous objects on the system.

1 Introduction

Schemes for wireless power transfer can be loosely classified into three broad categories, based on the length
scales involved. Consider the schematic shown in Figure 1 below. The key length scales are the size of the
device R0, the wavelength λ of the electromagnetic waves used, and the separation distance D. In the regime
of D � R0, we have devices such as transformers; while power transfer is efficient, the large device size is
not practical for many purposes. Alternatively, we could also have D � λ as in directed radiation or lasers;
however, these schemes have problems such as radiative loss in the far-field or the need for a clear line of
sight. But in the regime where R0 < λ < D (the “mid-range”), a scheme in which the source and load
devices can be coupled together selectively and efficiently can be valuable for powering mobile objects, with
applications like wireless charging and the operation of robots in factories.

Figure 1: A conceptual schematic showing a general setup for wireless power transfer. The left hand side
shows a source driving some device, which then transfers power wirelessly to a corresponding device on the
right, connected to a load.

Such a scheme for mid-range power transfer was proposed in 2008 by Karalis, et al. in [1], whose results we
explore in this paper. Experimental (and commercial) implementations of these schemes have been realized,
such as in [2]; such implementations are also described in detail in [3] and [4].

In Section 2, we briefly review the theory behind achieving selective coupling between two resonant disks
and motivate the analysis by presenting measures of transfer efficiency. We present in Section 3 the results
of a FDFD-based eigenmode analysis of two dielectric disks as a model system for implementing this scheme.
In Section 4, we investigate power flow and transfer efficiency by direct simulation of source and load in the
system of coupled disks. We briefly explore the influence of extraneous objects on the system in Section 5,
and we conclude by reviewing the efficiencies achieved in this analysis in Section 6.



2 Theory

Fundamentally, in order to model wireless power transfer in a system, we have to solve Maxwell’s equations.
The requirements for selective, efficient transfer of power, however, suggest that such a scheme can be
achieved using the phenomenon of resonance, which we can treat using the approximations provided by
coupled mode theory. Suppose that each object m supports a field Em(r). Then we can approximate
the behavior of the complete system as a time-varying superposition of these individual fields: E(t, r) ≈∑
m am(t)Em(r). Coupled-mode theory then allows us to approximate the dynamics of this system with the

following set of coupled differential equations for the time-varying coefficients am(t):

dam(t)

dt
= (−iωm − Γm) am(t) + i

∑
n 6=m

κmnan(t) + Fm(t), (1)

where ωm is the resonant frequency of the isolated object and Γm is its intrinsic decay rate to radiation
and absorption. The coupling between the objects is modeled by the introduction of the coefficients κmn,
while the term Fm(t) describes the drive imposed on object m. Since the energy density in the system is

proportional to |E(t, r)|2, the energy contained in each object as a function of time evolves as |am(t)|2.
Consider now a system of two identical objects, each with a resonance frequency ω and loss rate Γ. Then

if we drive object 1 and place a load on object 2 (modeled by a loss rate Γload), Equation 1 becomes

da1

dt
= (−iω − Γ) a1 + iκa2 + Fe−iωdrivet

da2

dt
= (−iω − Γ− Γload) a2 + iκa1.

(2)

The energy transfer efficiency η is maximum at ωdrive = ω, which at steady state is

η =
Γload |a2|2

Γ |a1|2 + (Γload + Γ) |a2|2
=

(Γload/Γ)κ2/Γ2

(1 + Γload/Γ)κ2/Γ2 + (1 + Γload/Γ)2
. (3)

Thus, the loading condition (at resonance) for maximum efficiency is Γload = Γ
√

1 + κ2/Γ2. From this, we
can conclude that the optimal efficiency depends only on the ratio κ/Γ.

To determine ω and Γ, we need to find the (complex) eigenfrequency for the isolated disk mode. To
determine κ, on the other hand, we make the observation that under F = 0 and Γload = 0, Equation 2 admits
normal mode solutions at frequencies ω ± κ. This means that we can find κ by finding the eigenfrequencies
of the normal modes for the coupled system and computing their frequency splitting.

3 FDFD Eigenmode Analysis of Dielectric Disk System

For our numerical simulations, we consider a system of two dielectric disks as our source and load objects.
We implement a 2D TM eigenmode solver in MATLAB, using the FDFD matrix equation

−Tεz (Db
xT
−1
µy
Df
x +Db

yT
−1
µx
Df
y )ez = ω2ez.

We note that the difference matricesD are constructed using SC-PML and so are frequency-dependent. Thus,
this is not quite a standard eigenvector problem—we need to provide an initial guess for the frequency.

As a result, the solution process we adopt is the following:

1. Pick an initial guess ω for the frequency, and construct the matrix A = −Tεz (Db
xT
−1
µy
Df
x +Db

yT
−1
µx
Df
y ).

2. Compute the eigenvectors of A using MATLAB’s eigs function for sparse matrices, by supplying it
with the initial guess ω2. This function provides several eigenvectors with eigenvalue close to ω2.

3. Visually check the output eigenvectors and discard any spurious modes.

We note that the eigenfrequencies found by the eigenmode solver (i.e., the square root of the eigenvalue)
are generally complex. The real part corresponds to the resonance frequency ω, while the imaginary part
corresponds to the loss rate Γ.
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Figure 2: An Ez eigenmode of the isolated disk, with λ ≈ 20R0. The green circle indicates the location of
the dielectric disk. Note that the colorbar is slightly saturated to emphasize the fields outside the disk.

3.1 Eigenmode Calculation of an Isolated Disk

Following [1], we use a relative permittivity of εr = 147.7 (1 − i 10−4) for the dielectric disk. For our
simulation, we use a grid resolution of 30 pt/R0, and a PML layer of 15 cells. To compare our results with
[1], we look for modes with wavelength λ ≈ 20R0, providing ω = 2πc/λ as our initial guess. The simulation
domain (without PML) is [−0.75λ, 0.75λ]× [−0.75λ, 0.75λ].

Figure 2 shows one of the eigenmodes found by our eigenmode solver, corresponding to Fig. 1 in [1]. The
eigenfrequency of this mode has real part ω = 0.314 (c/R0) and imaginary part Γ = 0.942× 10−4 (c/R0).
The Q-factor of this eigenmode is therefore Q = ω/2Γ = 1661, which is in good agreement with the value of
1661 found in Fig. 1 of [1].

3.2 Eigenmode Calculation of a Two Disk System

We next compute eigenmodes of the coupled two disk system, with the same εr, guess λ, and simulation
domain as above. The disks are oriented along the x axis, with a center-to-center separation D between the
disks; we pick D = 7 for this section. We use a grid resolution of 15 pt/R0 and a PML layer of 15 cells.

We identify the normal modes of the system as even and odd superpositions of the isolated disk mode
from Figure 2. These modes are plotted in Figure 3. The eigenfrequency for the left normal mode has real
part ω1 = 0.3155 (c/R0) and imaginary part Γ1 = 0.831× 10−4 (c/R0), while mode on the right has real
part ω2 = 0.3159 (c/R0) and imaginary part Γ2 = 0.927× 10−4 (c/R0).

The average frequency of these normal modes is therefore ω = (ω1 + ω2)/2 = 0.3157 (c/R0), while the
average loss rate is Γ = (Γ1 + Γ2)/2 = 0.879× 10−4 (c/R0). The frequency splitting can now be found to be
2κ = |ω1 − ω2| = 4.06× 10−4 (c/R0).

We use these averaged quantities to compute the average Q-factor and coupling ratio κ/Γ for D = 7. We
find Q = 1796 and κ/Γ = 2.31, again in good agreement with Q = 1804 and κ/Γ = 2.3 found in [1].

3.3 Time Evolution of Normal Modes

Having obtained two normal modes for the coupled disk system, we can also visualize the roles of κ and Γ
in energy transfer by looking at the evolution of these normal modes in the time domain. We plot the field

E(t, r) = ei(ω1+iΓ1)tE1(r) + ei(ω2+iΓ2)tE2(r),

where E1 and E2 denotes the electric field of the two modes in Figure 3, respectively.
A movie of E, for the cases of D = 5R0 and D = 7R0, can be accessed at http://youtu.be/jvZu3ho3XHA.

To remove the fast oscillation at ω, the frames are updated every 2π/ω. This leaves the beat frequency κ,
which we can see is the rate at which the mode moves from one disk to the other and back. Because the
system is lossy, the field decays over time at a rate approximately given by Γ.

http://youtu.be/jvZu3ho3XHA
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Figure 3: Ez eigenmodes of a coupled two-disk system, with D = 7R0, showing the even (left) and odd
(right) normal modes. The green circles indicate the location of the disks, and the color is slightly saturated
to emphasize the fields outside the disks. The vertical axis has also been zoomed in to approximately ±0.65λ.

The system D = 5R0 has a coupling ratio κ/Γ = 6.5, while the system D = 7R0 has κ/Γ = 2.3. We see
from the movie that this implies the former system can transfer energy between the disks at a faster rate
than the latter, confirming that κ/Γ dictates the efficiency of power transfer by prescribing the rate at which
energy is moved between the disks, relative to the system losses.

4 FDFD Simulation of System with Source and Load

One way of delivering power from the source to the load is to drive the source with a continuous sinusoidal
excitation. We perform an FDFD simulation of the two disk coupled system in order to obtain the power flow
in the system under steady state. In this simulation, the drive at the source disk is modeled using a uniform
current source density Jz within a circular region of radius R0/4 concentric with the source disk. The load is
modeled by increasing the magnitude of the imaginary part of the permittivity of the load disk. In principle,
it is possible that such a modification could affect the resonance frequency or the mutual coupling, rather
than only introducing Γload; nevertheless we choose this method for simplicity. Power flow is calculated by
computing the power flux using the time-averaged Poynting vector through rectangular regions around the
source disk, the load disk, and the periphery (near the PML boundary).

We sweep through a range of drive frequencies ωdrive near the (unloaded) resonance frequency ω. At each
drive frequency, we compute the power flow through each of the rectangular regions described above, and
we plot the results in Figure 4 below, which shows both the case of D = 7R0 and D = 3R0. We can also
compute the power transfer efficiency, which we define to be the ratio between the power into the load disk
over the power out of the source disk. This is plotted to the right in Figure 4.

We use a resolution of 10 pt/R0, and a PML layer of 15 cells. The simulation domain is [−0.5λ, 0.5λ]×
[−0.5λ, 0.5λ], where again λ = 20R0. We use a relative permittivity of εr = 147.7 (1− i 10−4) for the source
disk (the same as before) but εr = 147.7 (1− i 10−2) for the load disk.

5 Influence of Extraneous Objects on Coupled Disk System

Aside from transfer efficiency, a key requirement for efficient power transfer is selectivity—the source and
load should not couple strongly to objects other than each other. This is necessary, for example, to prevent
leakage of power into other devices, or even to a nearby human user.

To explore the selectivity of the coupled disk system, we look at the eigenmodes of the system when an
extraneous object is introduced. We consider a system of three disks, each of radius R0, with the centers
arranged in an equilateral triangle of side length D. We hold the relative permittivity of the two disks on
the bottom at εr = 147.7 (1− i 10−4). For the top disk, however, we consider two cases: in the first, we set
εobj
r = 49− 16i (which, according to [1], is a good model for human muscle in the GHz range); in the second,

we set εobj
r = 0.995 εr (i.e., an object very close to resonance).
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Figure 4: FDFD power flow calculations for the coupled disk system with disk 1 (left disk) as source and
disk 2 (right disk) as load, for the cases of D = 7R0 (top) and D = 3R0 (bottom).

We show two eigenmodes, one for each case, in Figure 5 below. We see that in the off-resonance case
where εobj

r is far from εr, there is minimal field amplitude in the extraneous object. In fact, we can still
clearly identify the perturbed normal modes from Figure 3; the coupling ratio is now κ/Γ = 2.33, indicating
a minimal effect on the coupling. On the other hand, if εobj

r ≈ εr, the extraneous object has a very noticeable
effect on the eigenmode field pattern, as is evident from Figure 5.
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Figure 5: Eigenmodes of the two-disk system in the presence of a perturbing object (a disk of the same size),
with mutual separations D = 7R0. On the left, the perturbing disk has εobj

r = 49 + 16i, while on the right,
the perturbing disk has εobj

r = 0.995εr. The green circles indicate the two-disk system, while the magenta
circle indicates the perturbing disk. Note that the color is slightly saturated to emphasize the fields outside.



6 Discussion

From the various results above, we can make several conclusions about this proposed scheme for wireless
transfer of power in the mid-range. Using the coupling ratios computed from our eigenmode analysis, we
can form the plot shown in the left of Figure 6 below. We run the simulation described in Section 3.2 for
various values of D, finding that, in the mid-range distances of D = 3R0 up to D = 12R0 (and λ ≈ 20R0),
we have coupling ratios that range from ∼ 45 to ∼ 0.1. Although this is not quite the regime of κ/Γ� 1, it
does nevertheless show that wireless transfer of power in the mid-range can be made practical [1].

It is also interesting to see how these coupling ratios correspond to questions about efficiency. The
theoretical efficiency curve as a function of κ/Γ (as given by Equation 3) is shown to the right of Figure 6.
We also show on this plot the results from our FDFD simulation of source and load, calculated by taking
the peak values in the right hand side of Figure 4.
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Figure 6: Coupling ratios as a function of separation, and efficiency as a function of coupling ratios. On the
left is a plot on a log-scale of the coupling ratios, presented alongside the quoted values from Fig. 2 of [1].
On the right, the theoretical efficiency curve is shown alongside the peak efficiency values from the FDFD
simulation of source and load.

The efficiency values obtained from the FDFD simulation are less than the theoretical values, which may
be a result of the way we are modeling our load. In our simulations, we could see significant differences in the
efficiency if we varied the magnitude of the imaginary part of the load disk’s permittivity. This can possibly
shift the resonance frequency and the optimal load dissipation rate Γload, resulting in reduced efficiency. If
we use the value for κ/Γ found via eigenmode analysis and assume the theoretical efficiency curve, however,
we obtain efficiencies of ∼ 95% (for D = 3R0) to ∼ 45% (for D = 7R0).

The other requirement for efficient (and safe) wireless transfer of power is selectivity in the transfer.
In the case of a non-resonant object, we find that the normal modes and the coupling ratios do not vary
significantly from the unperturbed values, even when the perturbing object is of the same shape, size, and
distance from the coupled resonant system.

7 Conclusions

Following the proposal by Karalis, et al., we investigated an approach to analyze wireless power transfer
using FDFD with resonantly coupled dielectric disks. We used an eigenmode analysis to obtain resonant
frequencies, losses, and coupling in a system of the coupled disk system, and used these values to evaluate
the behavior and performance of the coupled-disk scheme, as well as to verify that the scheme is selective
in the transfer. We also performed a basic FDFD simulation of source and load in order to calculate power
flow and efficiency in the system, as a complement to the coupled-mode theory approach in Karalis, et al.

The methods used in this report can also be generalized to study wireless power transfer in more general
systems, allowing the exploration of varying the material, geometry, etc. of the setup.

In the future, better approaches could be taken to more accurately model the load for our FDFD simula-
tion. Alternative ideas such as FDTD analysis could also be helpful in explicitly simulating power transfer.
In this latter scheme, it may also be interesting to study the effect of different schemes for excitation (such
as pulsing rather than sinusoidal drive), as well as perhaps time dependent material properties or geometry
(as in moving targets, etc.).
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